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Potts model specific heat critical exponents 
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Park, Maryland 20742, USA 

Received 10 June 1976 

Abstract. A series expansion for the free energy of the q-state Potts model on a square 
lattice is used to estimate the specific heat critical exponents. The analysis is based on a 
series transformation which was suggested by the known solution of the two-state Potts 
(Ising) model, and which makes optimum use of the duality theorem. The transformed 
series is quite smooth. Neville tables yield the estimates a(2)  =0~0001*0~0003 for the 
two-state model, a(3) = 0.296 f 0.002 for the three-state model, and a(4) = 0.45 f 0.02 for 
the four-state model. Our value for a(3) differs considerably from one reported by Straley 
and Fisher, and substantially improves compliance with the Rushbrooke inequality. 

We report numerical estimates for the specific heat critical exponents a(q) of the 
q-state Potts model on a square lattice. For q = 2 we obtain ( ~ ( 2 )  = 0.0001 *0.0003; 
this is consistent with the correct value ( ~ ( 2 ) = 0 .  For q = 3 we obtain a(3)= 
0.296*0.002; this differs considerably from the value 0.05 kO.10 reported by Straley 
and Fisher (1973). For q = 4, we obtain a(4) = 0.45 *0-02; there are no other results 
with which this may be compared. In the terminology of Mittag and Stephen (197 l), we 
are concerned here with the Potts model, and not the Potts vector model. These models 
differ for q = 4. 

The zero field series for the free energy of the q-state Potts model on a square lattice 
was investigated first by Kihara eta1 (1954). In the notation of Straley and Fisher, the 
free energy F per lattice site is a function of the low temperature variable x ;  
x = exp(-E,/kT) and - F / k T =  A(x) .  Kihara et a1 (in a slightly different form) calcu- 
lated the series expansion of A (x) up to x 16. Straley and Fisher checked the series up to 
x13, and by means of an independent expansion in a high temperature variable t, we 
checked the series up to x I 4 .  In the following, we also include the x15 and x16 terms. 

The free energy series, and the derived specific heat series, are quite irregular; the 
standard ratio method of analysis does not work well. Straley and Fisher obtained 
a(3)  by means of Pade approximants. 

We found it possible to smooth the free energy series substantially by means of a 
series transformation using a change of variable. Our procedure was motivated by the 
duality theorem for the q-state Potts model, and by what is known about the two-state 
Potts (or Ising) model. The resulting series is remarkably smooth, and Neville tables 
provide the estimates given above. 

t AFOSR-NRC Postdoctoral Research Awardee 1970-7 1. Present address: Los Alamos Scientific Labora- 
tory, Los Alamos, NM 87545. 
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The duality theorem (Potts 1952,  Kihara et a1 1954,  Mittag and Stephen 1971)  
provides two equivalent forms for the free energy, involving the low temperature 
variable x and the high temperature variable t, related by the dual transformation 

l - x  . l - t  
t =  X =  

1 + (4 - 1 ) ~ ’  1 + ( q  - 1)t‘ 

The two forms of the free energy are: 

-F/kT = A ( x )  = -In{[ 1 + (q - l ) t ] * / q } + A  (t). 

Then the quantity B ( x )  defined by 

B ( x )  = A(x) -In[1 +(q  - l ) x z ]  

is invariant to the above dual transformation, B ( x )  = B(t) .  Any phase transition must 
be associated with a singularity of B ( x ) .  The physical singularity is self-dual, and occurs 
at the point xo,  xo = t (xo)  = (1  + J4)-l. Our method of series analysis depends on this 
separation of the free energy into a term which is duality invariant and contains the 
physical singularity, and a remainder which is uninteresting. 

The exact expression for the free energy of the Ising model may be written in just 
this form. The function B ( x )  is an integral, 

1 1 2 ZIT 2.m 

2 2 . r r  0 0 
B ( x ) = - ( - )  dBldB21n[l-r(cos61+cos62)] 

and z is a function of x,  

2 = 2 x ( 1 - x 2 ) / ( 1  + x 2 ) 2 .  

This may also be written in a form which exhibits its invariance to the dual transforma- 
tion, 

z = 2xt ( x ) / [  1 - xc (x)]’ .  

Thus B ( x )  is a function of the variable x t ( x ) .  
The exact form of B ( x )  for the q-state Potts model is not known. However, the 

series expansion of A(x)  is known, and this provides the series expansion of B ( x ) .  
Further (by analogy with the Ising model) we expect that B ( x )  is more appropriately 
expressed as a function of the new variable y = x t ( x )  so that each term in the expansion 
is manifestly invariant to the dual transformation. This change in variable leads to the 
series 

B ( x )  = B*(Z) = c b,Z,, 2 = y/xot(xo). 

The singularity of B*(z) occurs at z = 1. Coefficients b, for the two-, three-, and 
four-state models are given in table 1 .  

The determination of the critical exponent is based on the following observations. 
First, we suppose that B*(z) has the branch point behaviour B*(z)  - ( 1  - 2)’. Near the 
transition temperature To, 1 - 2  is proportional to the square of the temperature 
deviation, 1 - z - ( T -  To)’. This is a consequence of the definition of y. Then, near the 
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Tnbk 1. Coefficients of the seriesexpansion of B*(z) .  The tabulated quantity is -lo3 b.. 

2 3 4 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

0 
0 

29.43725152 
20.20253553 
12.56500077 
8.325899679 
5.875550571 
4.359129225 
3.360518850 
2.669 141007 
2.170959556 
1.800217077 
1.516900497 
1.295544029 
1.119318614 
0.9767425006 
0.8597652257 

0 
0 

3589838486 
28.85682970 
19.97475755 
13.9848333 1 
10. I9306826 
7.731926891 
6.0656 17 199 
4.890015806 
4.030385783 
3.38259424 1 
2.881987283 
2.486832308 
2.169240652 
1.910001 205 
19695526641 

0 
0 

37.03703704 
32.92 18 1070 
24.46273434 
17.88345273 
13.37307434 
10.30907790 
8.179142146 
6.652059127 
5.523356303 
4.665993495 
3.9991 17346 
3.469739948 
3.042098452 
2,691383338 
2.399950858 

transition temperature, the specific heat C( 7') has the T dependence 

C(7')-(T-  

so that the specific heat exponent is a = 2 - 2p. Because this analysis is invariant to the 
dual transformation, the high and low temperature exponents are identical. 

Now we turn to the standard ratio method of analysis of the series B*(z) .  First, we 
construct the sequence 

g,, -- n(b,,/b,,-l - 1 ) .  

If the series behaves as assumed, then the exponent p is given by the limit 

p = -lim (1 +gn).  
n +CO 

When the sequence g,, is plotted against l / n ,  the resulting curves are quite smooth. 
Visual inspection gives the estimates a - 0 for q = 2, and a - 0.3 for q = 3. 

These estimates can be sharpened by constructing Neville tables (Jasnow and Wortis 
1968). We define gx = g,, and construct the sequences 

g ;  = (n/r)g;-' - [ ( n  - r ) / r ] g ; ~ \ .  

Table 2 shows the results for 4 = 2, 3 and 4, and for r = 0-3. (Note that all g :  are 
negative; the sign has been suppressed.) Because of the rapid accumulation of 
numerical uncertainty due to roundoff, these numbers were all computed originally to 
eight decimal places. Numerical tests of the effect of roundoff in the eighth place 
suggest that the numbers displayed in table 2 are accurate to four decimal places. The 
next column, g i ,  has lower accuracy and does not provide any useful information. 
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Table 2. Neville tables -gL for q = 2, 3 and 4. 

0 1 2 3 

q = 2  
10 1.8664 1.9999 1.9870 2.0463 
11 1.8785 1,9991 1.9955 2.0182 
12 1.8885 1.9990 1.9984 2.0070 
13 1.8970 1.9990 1.9993 2.0023 
14 1.9043 1.9991 1.9996 2.0008 
15 1.9107 1,9992 1.9997 2.0003 
16 1,9162 1.9993 1.9998 2.0001 

q = 3  
10 1.7579 1.8804 1.7767 1.9252 
11 1.7680 1.8687 1.8161 1.9211 
12 1.7759 1,8633 1.8366 1.8980 
13 1.7825 1.8606 1.8460 1.8773 
14 1,7879 1.8591 1,8498 1.8640 
15 1.7926 1.8580 1.8512 1.8567 
16 1.7966 1.8572 1.8515 1.8530 

q = 4  
10 1.6968 1.8477 1,6226 1,7589 
11 1.7075 1.8145 1.6788 1.8288 
12 1.7151 1.7986 1,7193 1.8409 
13 1,7209 1.7903 1.7442 1.8272 
14 1.7255 1.7856 1.7579 1.8080 
15 1.7293 1.7829 1.7647 1.7919 
16 1.7325 1.7810 1.7677 1.7807 

The sequences g: are quite smooth. If we assume that the trends seen for n = 10-16 
are maintained for larger n, then we can place upper and lower bounds on the limiting 
values, 

-2.0001 < g, < - 1.9998 (4  = 2) 

- 1 a8530 < g ,  < - 1 a85 15 

- 1 * 7 8 1 0 < g ,  < - 1 * 76 77 

(4 = 3) 

(4 = 4). 

This leads to the estimates of ( ~ ( 4 )  given at the beginning of this article. 
Straley and Fisher obtained also the critical exponents p and y f  for the three-state 

Potts model, and combined them to test compliance with the Rushbrooke inequality 
a'+ 2p + y f  5 2. Their exponent sum was 1.76 f 0.21, which violates the inequality. 
When their value of a' is replaced by ours, the sum becomes 2.00*0.12, which is 
consistent with the inequality. 
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